
Cost Efficient Scheduling for Delay-sensitive Tasks
in Edge Computing System

Yongchao Zhang∗, Xin Chen∗, Ying Chen∗, Zhuo Li∗, Jiwei Huang†
∗ School of Computer Science, Beijing Information Science & Technology University

Beijing, China

Email: zhangyongchao@mail.bistu.edu.cn, {chenxin, chenying, lizhuo}@bistu.edu.cn
† Beijing University of Posts and Telecommunications

Beijing, China

Email: huangjw@bupt.edu.cn

Abstract—Edge computing, as an emerging computing model,
can offload delay-sensitive computing tasks from Internet of
Thing (IoT) devices with limited computing resources and energy
to the edge cloud. In the edge computing system, several servers
are placed on the network edge near the IoT devices to process
the offloaded tasks. A key issue in edge computing system is
how to reduce the system cost while completing the offloaded
tasks. In this paper, we study the task scheduling problem
to reduce the cost of edge computing system. We model the
task scheduling problem as an optimization problem, where
the objective is to minimize the system cost while satisfying
the delay requirements of all the tasks. Then, we prove that
the proposed optimization problem is NP-hard. To solve this
optimization problem effectively, we propose a task scheduling
algorithm, called Two-stage Task Scheduling Cost Optimization
(TTSCO). We validate the effectiveness of our algorithm by
comparing with optimal solutions. The results show that the
approximate ratio is less than 1.2 for 95% of the data sets we use.
Performance evaluation shows that our algorithm can effectively
reduce the cost of edge computing system while satisfying the
delay requirements of all the tasks.

Index Terms—edge computing; task scheduling; delay-sensitive
tasks; cost efficiency;

I. INTRODUCTION

With the development of IoT technology, the number

of delay-sensitive applications (e.g., health monitoring [1],

location-based augmented reality games) are increasing rapid-

ly [2]. As the computing resources and energy of IoT devices

are limited, many processing-heavy tasks should be offloaded

to remote servers to be processed. Cloud computing with

powerful computing capacity is considered as a potential way

for processing the offloaded tasks. However, due to the long

distance between the conventional cloud and IoT devices,

sending a large number of tasks to conventional cloud for

processing will cause long response time and serious network

congestion. To deal with this issue, edge computing is recently

proposed as a promising computing model [3], [4]. Edge com-

puting provides an additional layer of computing infrastructure

which consists of some servers at the network edge (i.e., base

stations). For the computing tasks offloaded from IoT devices,

edge computing provides the computing services and returns

the results to the devices. In this way, the transmission delay

of offloaded task and the traffic load of core network will be

greatly reduced. Because of these benefits, edge computing

has drawn increasing attention from researchers.

In the edge computing, task scheduling problem has be-

come a hot topic for studying [9]-[18]. To reduce the energy

consumption caused by the computing of tasks, IoT devices

would offload computing tasks to the edge servers. However,

the task offloading consumes extra energy to transfer tasks

to the edge servers, and the completion time of offloaded

task would also increase. In this case, some works studied

how the devices make the task offloading decision [9]-[12].

In addition, when the computing task is scheduled to different

edge servers, the cost of transmission and computation are also

different. Therefore, some works aimed to reduce the system

cost generated by the transmission or computation of tasks

[13]-[18]. However, these works rarely considered the cost

generated by the edge servers. The problem of reducing the

system cost caused by the servers during the off-peak times

(e.g., at night) is largely unexplored [5].

In this paper, we study the cost optimization for task

scheduling problem in the edge computing system. The goal

is to minimize the cost of edge computing system while

satisfying the QoS requirements of all the tasks. We develop

a task scheduling model for the delay-sensitive input tasks.

Then, we formulate the cost optimization problem and prove

this optimization problem to be NP-Hard. Next, we propose

an approximate algorithm to solve this optimization problem,

which is called Two-stage Task Scheduling Cost Optimization

(TTSCO), and conduct the analysis for the TTSCO algorithm.

Finally, simulation results are provided to verify the accuracy

and performance improvement of our algorithm.

The remainder of this paper is as follows. In section II, we

discuss the related work in this field. In section III, the system

model and the optimization problem are presented. Section

VI proposes the TTSCO algorithm, and conducts the analysis.

In section VII, we present the simulation results to evaluate

the performance of our algorithm. Section VIII concludes this

paper and discusses the future work.

II. RELATED WORK

Edge computing has attracted significant attention in recent

years. Previous work about the edge computing included fog

73

2018 IEEE International Conference on Services Computing

2474-2473/18/$31.00 ©2018 IEEE
DOI 10.1109/SCC.2018.00017

computing [6], cloudlet [7], [8], femtoclouds [9], and mobile

edge computing [10]. Bonomi et al. [6] introduced the concept

and characteristics of fog computing which enabled a style

of applications and services. Verbelen et al. [8] presented a

cloudlet architecture with three layers, and executed the AR

use case based on their architecture. A femtocloud system

consisting of several co-located mobile devices was proposed

to provide cloud services at the edge [9]. Michael et al. [10]

presented an architectural topology of mobile edge computing

and classified serval applications deployed at the mobile edge.

There were extensive research studies about the task

scheduling problem in edge computing system. Kim et al. [11]

studied the cost-delay tradeoff for dual-side in mobile com-

puting system, and proposed control algorithm to minimize

the cost in the competition and cooperation scenario. Mao et

al. [12] proposed a dynamic computation offloading policy to

minimize the execution cost of a green Mobile Edge Comput-

ing (MEC) system with energy harvesting devices. Lyu et al.

[13] proposed an asymptotically optimal offloading approach

to maximize the network utility and guarantee the quality of

service of wireless applications. An online joint radio and

computational resource management algorithm were proposed

to minimize the long-term average power consumption for

the multi-user MEC system [14]. These works considered the

distribution of workload between the user and edge cloud, but

the task scheduling within the edge cloud was not studied.

Jia et al. [15] studied multiple cloudlets placement prob-

lem in a large scale Wireless Metropolitan Area Network

(WMAN), which was to minimize the average access delay be-

tween mobile and cloudlets. Zeng et al. [16] proposed an task

scheduling and resource management strategy to minimize the

task completion time in fog computing system. Gu et al. [17]

proposed a two-phase linear programming-based algorithm to

tackle the cost efficiency problem in fog computing medical

cyber-physical systems (FC-MCPS). In order to handle the

peak workloads from mobile users and efficiently utilize cloud

resources, Tong et al. [18] proposed a tree hierarchy of geo-

distributed servers in the edge cloud. And they also proposed

an efficient heuristic algorithm to schedule the workloads.

Urgaonkar et al. [19] modeled the optimize operational costs

as a Markov Decision Problem (MDP), and presented an

approach to minimize the operational costs in this model. To

satisfy the quality of service requirements of the tasks, Song et

al. [20] presented an periodical task distribution to maximize

the number of tasks which can be processed in the edge cloud.

In this works, the task scheduling and resource management

problem within the edge cloud were well studied. However,

they did not consider the task scheduling problem for reducing

system cost generated by the edge servers.

III. SYSTEM MODEL

In this section, we first introduce the edge computing

system. Then, based on the developed system model, we

formulate cost optimization problem.

Fig. 1. Edge Computing Architecture.

A. Architecture

An edge computing system is composed of an Edge Com-

puting Agent (ECA) and several heterogeneous edge servers

as shown in Fig. 1. The ECA has a global overview of all

available resources, and communicates with each deployed

server [21]. Each server runs several virtual machines which

processes the offloaded tasks on behalf of the users. By

offloading the computing tasks to the edge computing system,

better quality of experience (i.e., powerful computing capabil-

ity, low latency) can be achieved.

For each computing task offloaded from the user, ECA will

select an available server to process according to its resource

requirements. In this paper, we consider that ECA executes

task scheduling strategy periodically [20], and the scheduling

strategy is executed after the group of current tasks are all

completed. Let I be the interval time between two consecutive

task scheduling process. As the completion time of each group

will be different from each other, we dynamically adjust the

value of I , which is given as follows,

I = tmd (1)

Here, tmd is the maximum of expect completion time of all

the tasks.

B. Problem Formulation

To formulate the task scheduling problem in the edge

computing system, we first model the input tasks offloaded

from the users and the available edge servers. Then, we

derive the resource constraints of task scheduling problem,

and propose a unified optimization framework.

1) Task Model and Server Model: In the edge computing

system, we consider a group of delay-sensitive tasks T =
{t1, t2, · · · , tn} to be processed at the time of executing the

tasks scheduling strategy, where n is the total number of input

tasks. Each task ti ∈ T is indicated by ti = {di, wi, δi, si}. Let

di denote the transmission data size of ti, which includes input

data to be computed by the server and output data returned

to the users, wi denote the the computation workload [22] of

74

TABLE I
NOTATIONS AND DEFINITIONS

Notion Definition
n Number of tasks
m Number of servers
xij Denote whether task ti is scheduled to server ej
yj The state of ej
ti The ith task
ej The jth server
si The storage requirement of ti
δi The dealy requirement of ti
wi The computation workload of ti
di The size of transmission data of ti
bij The requirement bandwidth if ti was computed on ej
Sj The available storage of server ej
Vj The number of VMs that are deployed on server ej
Rj The computing rate of each VM under the server ej
Bj The bandwidth between ej and the ECA
Cj The cost of server ej

ti, δi denote the deadline requirement of ti, and si denote the

storage requirement of ti.

We consider there are m heterogeneous edge servers E =
{e1, e2, · · · , em} in the edge computing system. Each server

ej ∈ E is denoted by ej = {Bj , Vj , Rj , Sj}. Let Bj denote

the available communication bandwidth between server ej and

the ECA at the time of executing task scheduling strategy.

A set of VMs are deployed on each server, and each VM

can only process one computing task at the same time [20].

Let Vj be the number of VMs that are deployed on server

ej , and Sj denote the available storage resource of server ej .

The computing rate of each VM on the server ej is the same,

which is denoted by Rj . And the bandwidth occupied by each

VM can be dynamically adjusted when the task scheduling

happens.

Besides, we further denote bij as the bandwidth requirement

when ti is scheduled to ej for processing, and Cj as the cost

of server ej when it is in the ON state. For the brevity, the

major notations and definitions used in this paper are listed in

Table I.

We define binary variable xij to denote whether task ti is

scheduled to server ej , i.e.,

xij =

{
1, task ti is scheduled to the server ej
0, otherwise.

Since the edge computing system has sufficient service ca-

pacity to process all the task requests, each task ti will be

scheduled to one server for processing. And a task can only

be processed by one server. This leads to

m∑
j=1

xij = 1 (2)

As the resources in each server are limited, these following

task scheduling constraints must be satisfied. In each server,

there must be sufficient storage space to store the processed

tasks, otherwise it will result in the loss of task data. Therefore,

the total storage requirement of each task scheduled to server

ej can not exceed the storage resource of server ej . That is,

n∑
i=1

xijsi ≤ Sj (3)

In addition, since the number of VMs deployed per server

is limited, the total number of tasks scheduled to server ej can

not exceed the number of VMs on server ej .

n∑
i=1

xij ≤ Vj (4)

2) Performance: In this paper, since the offloaded task has

its delay requirement, the constraint is that each task must be

completed within its deadline. Basically, the task completion

time consists of three basic components: the computation time

denoted by lcomij , the input data’s transmission time linij of ti
from ECA to server ej , and the output data’s transmission time

loutij from server to ECA. Hence, we have:

xij(l
com
ij + linij + loutij) ≤ δi (5)

For each task ti scheduled to server ej , the three compo-

nents of time can be calculated as follows [22],

lcomij =
wi

Rj
(6)

linij =
dini

bdown
ij

(7)

loutij =
douti

bupij
(8)

where dini denote the size of task ti’s input data, douti denote

the size of task ti’s output data, bupij and bdown
ij denote the

uplink and downlink bandwidth of ti between the ECA and

the server, respectively.

In this paper, we assume that bupij is equal to bdown
ij , i.e.,

b∗ij = bupij = bdown
ij (9)

Thus, (5) now becomes

xij(
di
b∗ij

+
wi

Rj
) ≤ δi (10)

where

di = dini + douti

If task ti is scheduled to server ej , the required bandwidth

can be obtained by solving (10). The bandwidth requirement

inequality is as follows,

b∗ij ≥
di

δi − wi

Rj

(11)

To reduce the cost of edge computing system, we consider

that all tasks are completed correctly at their respective dead-

lines δi. Then, the required bandwidth of task ti between the

ECA and ej can be obtained as follows,

bij =
di

δi − wi

Rj

(12)

75

For each edge server ej , the sum of required bandwidth of

the task scheduled to server ej must be no greater than the

bandwidth of server ej . That is,

n∑
i=1

xijbij ≤ Bj (13)

3) Cost: In the edge computing system, since ECA com-

municates with each edge server and manages it, each server

can be switched ON or OFF by the ECA. For the server which

is in ON state, the edge computing system will pay a certain

cost to maintain the normal running of this server [23]. For

example, the resource in ECA will be consumed to manage

the running server, and the running server will consume a lot

of energy. Let Cj denote the cost which the edge computing

system pays when the server ej is in ON state. In this paper,

we define the cost of edge computing system as the sum cost

of those servers which are in ON state.

Then we identify the binary variable about the state of ej .

Let yj represent the state of server ej . That is,

yj =

{
1, server ej is in ON state

0, otherwise.

4) Optimization Problem: In the edge computing system,

ECA schedules each offloaded task to the edge server. When

the server is assigned tasks, it will be in ON state, otherwise

be in OFF state [24]. The optimization objective of our

task scheduling strategy is to minimize the cost of the edge

computing system.

Summarize all issues discussed above, the cost minimiza-

tion optimization problem of edge computing system can be

formulated as follows,

min
xij

m∑
j=1

yjCj (14)

Subject to
m∑
j=1

xij = 1 ∀i ∈ 1, 2, · · · , n (15)

n∑
i=1

xijsi ≤ Sj ∀j ∈ 1, 2, · · · ,m (16)

n∑
i=1

xij ≤ Vj ∀j ∈ 1, 2, · · · ,m (17)

n∑
i=1

xijbij ≤ Bj ∀j ∈ 1, 2, · · · ,m (18)

Next, we prove that the cost optimization problem proposed

in this paper is NP-hard.

Theorem. The cost optimization problem formulated by this
model is NP-hard.

Proof. The resources of each edge server ej can be presented

by vector �pej = (Sj , Vj , Bj). When task ti is computed on

server ej , the resources required by task ti can be presented

by vector �ptij = (si, 1, bij). We consider a special case of our

problem in which all servers are homogeneous. The resources

required by task ti can be rewritten as �pti = (si, 1, bi), and

the resources of each server ej will switch to �pe = (S, V,B).
Recall the objective of the cost optimization problem is to

minimize system cost while ensuring the QoS requirements

of all tasks. We can consider each task as a item and each

server as a bin. Then, the goal is to use the minimum number

of bins to pack all items into bins. Obviously, this special

problem is equivalent to the three-dimensional vector packing

problem, which is NP-hard [25].

Prove that our cost optimization problem is NP-hard by us-

ing reduction to absurdity. Assuming the optimization problem

is not NP-hard, then the special case of the problem must not

be NP-hard. However, it is contrary to the conclusion we have

derived. Hence our cost optimization problem is NP-hard.

IV. ALGORITHM DESIGN

In this section, we propose an efficient TTSCO algorithm

to solve our cost optimization problem. Then, we conduct the

analysis for the TTSCO algorithm.

Since the cost optimization problem proposed in this paper

is NP-hard, it is impossible to obtain the optimal solution

in polynomial time [26]. Based on the heuristic algorithm

(BF), we design TTSCO algorithm to solve the optimization

problem. The TTSCO algorithm consists of two stages. In the

stage 1, we obtain a preliminary task scheduling strategy using

the improved BF algorithm. And in the stage 2, we optimize

the previous task scheduling scheme and get the finial strategy.

Stage 1.

Since the edge servers are heterogeneous in the cost opti-

mization problem, the TTSCO algorithm should consider how

to select edge servers to process the offloaded tasks. Recall

the goal of our task scheduling strategy is to minimize the

cost of edge computing system, TTSCO algorithm selects the

server with the smallest unit cost uj , which is expressed as

(19). Without loss of generality, the unit cost of different edge

servers are also unequal.

uj =
Cj

zj
(19)

Where zj denote the size of server ej ,

zj =
mSj∑m
k=1 Sj

+
mVk∑m
k=1 Vk

+
mBj∑m
k=1 Bk

(20)

We define �qej as the remaining available resources of server

ej after some tasks are scheduled to it. Based on the BF

algorithm, for the offloaded tasks which can be processed on

the server ej , ECA selects the largest task to be process on

this server. In the TTSCO algorithm, we define largest to be

the task that maximizes the dot product hi [27]. Formally, the

dot product hi can be expressed as,

hi = �qej�ptij

= siS
′
j + V ′

j + bijB
′
j (21)

76

Where

�qej = (S′
j , V

′
j , B

′
j)

= �pej −
∑

pt∗j (22)

Within pt∗j denote the resource requirements of all tasks

scheduled to server ej .

Stage 2.

After the stage 1, we get the preliminary task scheduling

strategy. But it is worth noting that, in some special cases, the

system cost of preliminary scheduling strategy can be reduced

further.

For a simple example, consider there are two tasks A1,

A2 to be computed, and two edge servers B1, B2. The

resource requirement vector of tasks A1, A2 are (10, 10, 10)
and (20, 20, 20), respectively. And the available resource vec-

tor of servers B1 and B2 are (15, 15, 15) and (50, 50, 50),
respectively. According to the first scheduling stage, task A1

will be scheduled to server B1, then task A2 will be scheduled

to server B2. In this case, the total cost is the sum of two

servers’ cost. However, if all tasks are scheduled to server B2

for processing, the total cost is only the cost of server B2. By

this scheduling strategy, the total cost is obviously reduced.

According to the above example, for the server which

is selected in the end, only a small amount resources are

used. Therefore, after the first scheduling stage, we need to

further optimize the scheduling strategy to reduce unnecessary

cost. In the general case, the last selected server will have a

large amount of available resources. In the TTSCO algorithm,

we propose an optimization strategy to maximize resources

utilization of the last selected server. The main idea of op-

timization strategy is to re-put the tasks in the smallest cost

servers into the last selected server after the first stage. In this

way, the TTSCO algorithm can increase the utilization of the

server with highest cost, and reduce unnecessary cost which

are caused by the servers with smaller cost.

Summarize all above discussions, we propose the TTSCO

algorithm to solve our optimization problem, as shown in

Algorithm 1. The input of the algorithm are the set of tasks

to be scheduled to the servers and the set of available edge

servers. In line 1, we first initialize the decision binary variable

xij and yj in the optimization problem.

In stage 1, we sort the edge servers with non-decreasing

order of unit cost uj and non-decreasing order of Cj when

the unit costs are equal according to (19) and (20). From line

5 to 16, we select server to process unscheduled tasks based

on their resource requirements and the available resources of

server. In line 6, we select the server ej with the smallest unit

cost in the set of available servers E. If the available resource

of selected server can meet the resource requirements of some

tasks in the unscheduled tasks set T , then choose the biggest

task to put into server ej (line 7-14). Otherwise, the server ej
is removed from the set of available servers E (line 15). The

biggest task ti is obtained according to (21) and (22) in line

8. Then task ti is removed form the set of unscheduled tasks

Algorithm 1 Our TTSCO algorithm for the cost optimization

problem

Input: Set of tasks to be scheduled T , set of available edge

servers E
Output: Task scheduling variable {xij}, the state of servers

{yj}
1: Initialize all variable xij to be 0, set yj = 0 for all servers

2: Stage 1:

3: Obtain the vector �pej and compute the unit cost uj of each

server ej ∈ E
4: Set of servers that are used U = {}
5: while T �= Ø do
6: Choose the server ej with the smallest value of unit

cost uj in E
7: while there are tasks can be assigned into server ej

do
8: Compute the dot product h of all tasks can be

assigned into server ej
9: Accommodate task ti with the biggest value of dot

product into server ej
10: T ← T \ {ti}
11: Set xij = 1
12: Set yj = 1
13: U = U ∪ {ej}
14: end while
15: E ← E \ {ej}
16: end while
17: Stage 2:

18: Obtain the last selected server eg1 and server eg2 with

smallest cost in U
19: while task ti in eg2 can be put into the server eg1 do
20: Put task ti into server eg2
21: Set xig1 = 1
22: if there is no task in eg2 then
23: U ← U \ {eg2}
24: Set yg2 = 0
25: Obtain the new server eg2 with smallest cost in U
26: end if
27: end while

set T , and tij , yj are set to be 1 (line 10-12). And the server

ej is added into the set of servers that are used U (line 13).

In stage 2, we first obtain the last selected server eg1 and

server eg2 with smallest cost in U . If the available resources

in server eg1 can meet the resource requirements of task ti
in server eg2, we re-put task ti into server eg1 and update the

task scheduling variable (line 19-27). When tasks in server eg2
are all removed, the server eg2 will be removed from U , and

update the state of server eg2. Then the new server with the

smallest cost is got from U (line 22-25).

We conduct the time complexity analysis for the TTSCO

algorithm. Recall the first stage in our TTSCO algorithm, there

are two main phases: sorting the servers and scheduling tasks

to servers. In the first phase, the process of sorting servers will

take at least O(mlog(m)) time. In the second phase, there are

77

n tasks that need to be scheduled. Considering the worst case

that the selected server can meet the source requirements of all

unscheduled tasks, algorithm will cost n time to compute dot

product and choose the biggest task. In this case, the second

phase will cost at least n2 time. Therefore, the worst time

complexity of the first stage is mlog(m)+n2. For the second

stage, it will task n − 1 time in the worst case. So the worst

time complexity of our TTSCO algorithm is mlog(m) + n2.

V. PERFORMANCE EVALUATION

In this section, we conduct the performance evaluation of

TTSCO algorithm for solving the cost optimization problem.

By the simulation results, we show the effectiveness and

improvement of our task scheduling strategy, compared with

a baseline strategy: random scheduling strategy (RANDOM).

The random strategy randomly schedules each task to an

available server for processing, where the selected server can

satisfy the QoS requirements of task requests.

In the experiments, we consider that the edge computing

system is composed of two types of servers. The edge com-

puting system has sufficient service capacity to process all the

task requests. For each task request, its delay requirements is

as di/α, where α is randomly distributed in [9, 11]. Without

loss of generality, the service capacity parameters of different

servers are all different, which include the storage capacity,

the number of VMs, the computing rate and communication

bandwidth. And the cost of each server is set to be positively

related to its service capacity.

A. Comparison Experiment

We first check the performance of results obtained by

our TTSCO algorithm. We compare the results of TTSCO

algorithm with the optimal solutions. We use LINGO software

to obtain the optimal solutions. We plot the results of our

algorithm and optimal solutions in Fig. 2. Comparison result

shows that the TTSCO algorithm solutions are close to the

optimal solution.

Then we denote c1 as the solution obtained by our TTSCO

algorithm, and c2 as the optimal solution obtained by LINGO

software. Let the approximate ratio, c1/c2, denote as the

indicator of the performance of our algorithm. We plot the

cumulatively distribution function (CDF) of the approximation

ratio in Fig. 3.

It can be seen form Fig. 3 that the approximate ratio is

between 1 and 1.3, and 95% of approximate ratio is less

than 1.2. The simulation result can validate the accuracy of

our TTSCO algorithm. With the increase of the number of

input tasks, we find that a long time (maybe more than one

hour) will be spent to get the optimal solutions by LINGO

software. However, the approximate solutions of our TTSCO

algorithm can be obtained in a few seconds by MATLAB.

In addition, since the cost optimization problem is NP-hard,

we can not obtain the optimal solutions in the polynomial

time. However, an approximate solution can be obtained by

our TTSCO algorithm in the polynomial time. Therefore, the

20 60 100 140 180 220
20

60

100

140

180

220

Optimal Solution

TT
S

C
O

 A
lg

or
ith

m
 S

ol
ut

io
n

 Experimental results
TTSCO is equal to optimal

Fig. 2. TTSCO Algorithm and Optimal Solution

1 1.05 1.1 1.15 1.2 1.25 1.3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

D
F

of
 A

pp
ro

xi
m

at
io

n
R

at
io

approximation ratio

Fig. 3. CDF of approximation ratio

TTSCO algorithm proposed in this paper is both accurate and

efficient.

B. Parameters Analysis

In this subsection, we analyse the effect of parameters on

our TTSCO algorithm compared with the RANDOM algo-

rithm. These parameters include the number of input tasks,

transmission data size and delay requirement.

1) The Effect of Number of Tasks: In this simulation, we

evaluate the performance of our TTSCO algorithm with differ-

ent number of input tasks. The transmission data size of input

tasks is set to 50MB. We change the number of input tasks

from 30 to 150 with an increment of 30. The performance of

TTSCO algorithm is compared with the RANDOM algorithm.

We plot the cost of the edge computing system obtained by

both algorithm in Fig. 4.

78

30 40 60 80 100 120 140 150
0

100

200

300

400

500

600

Number of Input Tasks

C
os

t

TTSCO Algorithm
RANDOM Alogorithm

Fig. 4. The Effect of Number of tasks

25 30 35 40 45 50
200

250

300

350

400

450

500

Transmission Data Size of Input Tasks

C
os

t

TTSCO Algorithm
RANDOM Alogorithm

Fig. 5. The Effect of Transmission Data Size

Fig. 4 shows that the cost of edge computing system will

increase with the increase of the number of input tasks. This

is because more servers are need to process tasks, which leads

to increase in the cost. As seen from Fig. 4, our TTSCO algo-

rithm can reduce 50% cost obtained by RANDOM algorithm

on average. The reason is that our TTSCO algorithm increases

the resource utilization of each used server. In this case, the

number of servers in the ON state will decrease.

2) The Effect of Transmission Data Size: In this simulation,

we study the impact of different transmission data size of

input tasks on the performance of our TTSCO algorithm and

RANDOM algorithm. We set the number of input tasks to 150.

And the transmission data size of input tasks increases from

25MB to 50MB with an increment of 5MB. We plot the cost

of the edge computing system obtained by both algorithms in

Fig. 5.

Fig. 5 shows that the cost of edge computing system will

generally increase with the increase of transmission data size

of tasks under our TTSCO algorithm. However, when the

transmission data size of tasks is small (i.e. below 30MB),

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
150

200

250

300

350

400

450

500

Reduction Rate ρ

C
os

t

TTSCO Algorithm
RANDOM Alogorithm

Fig. 6. The Effect of Delay Requirement of Tasks

the cost will not increase with the increase of transmission

data size. The reason is that the number of VMs is the main

limitation of task scheduling. However, the resource utilization

of bandwidth and storage on each server is relatively low.

When the transmission data size of tasks increases, resource

utilization of each server will increase, but the total cost

will not change (i.e. between 25MB and 30MB). When the

transmission data size continues to increase, the resources of

the used servers are not enough to process these tasks, and

more servers need to be used. In this case, the system cost

will increase with the increase of transmission data size.

It can also be seen from Fig. 5 that the cost is roughly

the same by the RANDOM algorithm. The reason is that the

RANDOM algorithm randomly selects the server to process

tasks, which causes lots of running servers are with low

resource utilization. With the increase of transmission data

size, resource utilization of each server increases, but the

total cost will remain unchanged. It is showed in Fig. 5 that

our TTSSCO algorithm can reduce 50% cost obtained by

RANDOM algorithm on average.

3) The Effect of Delay Requirement of Tasks: In this simu-

lation, we evaluate the performance of our TTSCO algorithm

with the different delay requirement of input tasks. We define

a task set including 7 tasks where the transmission data size

of tasks is varied from 20MB to 50MB with an increment

of 5MB. We use 15 task sets as the input tasks. The delay

requirement of each task is set to δ/ρ, where δ is the original

delay and ρ is the reduction rate. We change ρ from 1 to 2 with

an increment of 0.2, and plot the cost of the edge computing

system obtained by both algorithms in Fig. 6.

Similar result can be drawn from Fig. 6. With the increase

of reduction rate ρ, the cost obtained by TTSCO algorithm will

increase, and the cost by RANDOM strategy is not changed

basically. This is because the smaller delay means the larger

transmission bandwidth is required, that causes more servers

need to be used to process input tasks. Fig. 6 shows that our

TTSCO algorithm can reduce 45% cost that is obtained by

RANDOM algorithm on the average.

79

VI. CONCLUSION

In this paper, we explore the cost optimization for task

scheduling problem in the edge computing system. We propose

the optimization problem to minimize the cost of the edge

computing system while satisfying all input tasks’ QoS re-

quirements. An effective algorithm, called TTSCO algorithm,

is proposed to solve the cost optimization problem. By com-

paring with optimal solutions obtained by LINGO software,

we verify the accuracy of our TTSCO algorithm. Performance

evaluation results show the improvement of our algorithm in

reducing the cost of edge computing system compared with the

RANDOM algorithm. In the future research, we will consider

dynamic resource management and tasking scheduling among

multiple edge clouds.

ACKNOWLEDGMENT

This work is partly supported by the National Natu-

ral Science Foundation of China (No.61370065, 61502040),

Supplementary and Supportive Project for Teachers at

Beijing Information Science and Technology University

(No.5111823401), National Key Technology Research and

Development Program of the Ministry of Science and

Technology of China (No.2015BAK12B03-03) and Bei-

jing Municipal Program for Excellent Teacher Promotion

(No.PXM2017 014224 000028).

REFERENCES

[1] M Hassanalieragh et al., ”Health Monitoring and Managemen-
t Using Internet-of-Things (IoT) Sensing with Cloud-Based
Processing: Opportunities and Challenges.” IEEE International
Conference on Services Computing, 2015:285-292.

[2] S Tata, R Jain, H Ludwig, S Gopisetty, ”Living in the Cloud
or on the Edge: Opportunities and Challenges of IOT Applica-
tion Architecture.” IEEE International Conference on Services
Computing, 2017:220-224.

[3] W. Shi et al., Edge Computing: Vision and Challenges, IEEE
Internet of Things J., vol. 3, no. 5, 2016, pp. 637-646.

[4] S Li, J Huang, ”GSPN-Based Reliability-Aware Performance
Evaluation of IoT Services.” IEEE International Conference on
Services Computing, 2017:483-486.

[5] Y.-J. Ku et al., 5G radio access network design with the fog
paradigm: Confluence of communications and computing, IEEE
Commun. Mag., vol. 55, no. 4, pp. 46-52, Apr. 2017.

[6] F. Bonomi, ”Fog Computing and Its Role in the Internet of
Things”, Proc. First Edition of the MCC Workshop on Mobile
Cloud Computing, Aug. 2018.

[7] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, ”The case
for vm-based cloudlets in mobile computing”, IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14-23, Oct 2009.

[8] T. Verbelen and P. Simoens and F. De Turck and B. Dhoedt,
”Cloudlets: Bringing the Cloud to the Mobile User,” in Proc.
of ACM Workshop on Mobile Cloud Computing and Services,
2012, pp. 29-36.

[9] K. Habak, M. Ammar, K. A. Harras, E. Zegura, ”Femto clouds:
Leveraging mobile devices to provide cloud service at the
edge”, Cloud Computing (CLOUD) 2015 IEEE 8th International
Conference, pp. 9-16, 2015.

[10] M. T. Beck, M. Werner, S. Feld, and T. Schimper, ”Mobile edge
computing: A taxonomy, ” in Proc. of the Sixth International
Conference on Advances in Future Internet, AFIN, 2014.

[11] Kim, Yeongjin, J. Kwak, and C. Song. Dual-side Optimization
for Cost-Delay Tradeoff in Mobile Edge Computing. IEEE
Transactions on Vehicular Technology pp. 99 :1-1, 2017.

[12] Y. Mao, J. Zhang, and K. B. Letaief, Dynamic computation
offloading for mobile-edge computing with energy harvesting
devices, IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 3590-3605, 2016.

[13] X. Lyu, W. Ni, H. Tian, R. P. Liu, X. Wang, G. B. Giannakis,
and A. Paulraj, Optimal schedule of mobile edge computing for
Internet of Things using partial information, IEEE J. Sel. Areas
Commun., accepted, 2017.

[14] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, S-
tochastic joint radio and computational resource manage-
ment for multi-user mobileedge computing systems, 2017,
http://arxiv.org/abs/1702.00892.

[15] M. Jia, J. Cao, and W. Liang. Optimal cloudlet placement
and user to cloudlet allocation in wireless metropolitan area
networks. IEEE Transactions on Cloud Computing, in press,
2015.

[16] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, Joint optimization
of task scheduling and image placement in fog computing
supported softwaredefined embedded system, IEEE Transactions
on Computers, vol. 65, no. 12, pp. 3702-3712, 2016.

[17] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, Cost effi-
cient resource management in fog computing supported medical
cyberphysical system, IEEE Transactions on Emerging Topics in
Computing, vol. 5, no. 1, pp. 108-119, 2017.

[18] L. Tong, Y. Li, and W. Gao, A hierarchical edge cloud ar-
chitecture for mobile computing, in IEEE INFOCOM16, San
Francisco, CA, USA, July 2016, pp. 1-9.

[19] R. Urgaonkar, S. Wang, T. Hea, M. Zafer, K. Chan, and K.
K. Leung, Dynamic service migration and workload scheduling
in edgeclouds, Performance Evaluation, vol. 91, pp. 205-228,
2015.

[20] Song Y, Yau S S, Yu R, et al. ”An Approach to QoS-based Task
Distribution in Edge Computing Networks for IoT Application-
s.” IEEE International Conference on Edge Computing IEEE,
2017:32-39.

[21] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt.
2012. Cloudlets: bringing the cloud to the mobile user. In
Proceedings of the third ACM workshop on Mobile cloud
computing and services (MCS ’12). ACM, New York, NY, USA,
29-36.

[22] K. Kumar, J. Liu, Y. Lu, and B. K. Bhargava, A survey of
computation offloading for mobile systems, Mobile Networks
and Applications, vol. 18, no. 1, pp. 129-140, 2013.

[23] Hadji, Makhlouf, and D. Zeghlache. ”Minimum Cost Maximum
Flow Algorithm for Dynamic Resource Allocation in Clouds.”
IEEE, International Conference on Cloud Computing IEEE,
2012:876-882.

[24] F. Cao, M.M. Zhu, C.Q. Wu, ”Energy-efficient resource man-
agement for scientific workflows in clouds” in Services (SER-
VICES) 2014 IEEE World Congress on, IEEE, 2014.

[25] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, Heuristics
for vector bin packing. Microsoft Research, Tech. Rep., 2010.

[26] Kang, J, and Park, S, Algorithms for the variable sized bin
packing problem, European Journal Operational Research, vol.
147, no. 2, pp. 365-372, 2003.

[27] M. Gabay, S. Zaourar, ”Variable Size Vector Bin Packing
Heuristics - Application to the Machine Reassignment Problem”,
INRIA Tech. Rep., 2013.

80

